The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation.
نویسندگان
چکیده
Our understanding of the mechanisms used by Mycobacterium tuberculosis to persist in a "dormant" state is essential to the development of therapies effective in sterilizing tissues. Gene expression profiling in model systems has revealed a complex adaptive response thought to endow M. tuberculosis with the capacity to survive several months of combinatorial antibiotic treatment. We show here that this adaptive response may involve remodeling of the peptidoglycan network by substitution of 4-->3 cross-links generated by the D,D-transpeptidase activity of penicillin-binding proteins by 3-->3 cross-links generated by a transpeptidase of L,D specificity. A candidate gene, previously shown to be upregulated upon nutrient starvation, was found to encode an L,D-transpeptidase active in the formation of 3-->3 cross-links. The enzyme, Ldt(Mt1), was inactivated by carbapenems, a class of beta-lactam antibiotics that are poorly hydrolyzed by the M. tuberculosis beta-lactamases. Ldt(Mt1) and carbapenems may therefore represent a target and a drug family relevant to the eradication of persistent M. tuberculosis.
منابع مشابه
Serine/Threonine Protein Phosphatase-Mediated Control of the Peptidoglycan Cross-Linking l,d-Transpeptidase Pathway in Enterococcus faecium
The last step of peptidoglycan polymerization involves two families of unrelated transpeptidases that are the essential targets of β-lactam antibiotics. D,D-transpeptidases of the penicillin-binding protein (PBP) family are active-site serine enzymes that use pentapeptide precursors and are the main or exclusive cross-linking enzymes in nearly all bacteria. However, peptidoglycan cross-linking ...
متن کاملStructure of LdtMt2, an l,d-transpeptidase from Mycobacterium tuberculosis
The transpeptidase LtdMt2 catalyzes the formation of the (3-3) cross-links characteristic of the peptidoglycan layer in the Mycobacterium tuberculosis cell wall. Bioinformatics analysis suggests that the extramembrane part of the enzyme consists of three domains: two smaller domains (denoted as A and B domains) and a transpeptidase domain (the C domain) at the C-terminus. The crystal structures...
متن کاملBuilding a Full-Atom Model of L,Dtranspeptidase 2 from Mycobacterium tuberculosis for Screening New Inhibitors
L,D-transpeptidase 2 from Mycobacterium tuberculosis plays a key role in the formation of the cell wall of a pathogen and catalyzes the cross-linking of growing peptidoglycan chains by non-classical 3-3 bonds, which causes resistance to a broad spectrum of penicillins. Molecular modeling of enzyme interactions with the N- and C-terminal tetrapeptide fragments of growing peptidoglycan chains has...
متن کاملIn vitro cross-linking of Mycobacterium tuberculosis peptidoglycan by L,D-transpeptidases and inactivation of these enzymes by carbapenems.
The Mycobacterium tuberculosis peptidoglycan is cross-linked mainly by l,d-transpeptidases (LDTs), which are efficiently inactivated by a single β-lactam class, the carbapenems. Development of carbapenems for tuberculosis treatment has recently raised considerable interest since these drugs, in association with the β-lactamase inhibitor clavulanic acid, are uniformly active against extensively ...
متن کاملRole of the penicillin-sensitive transpeptidation reaction in attachment of newly synthesized peptidoglycan to cell walls of Micrococcus luteus.
Cell-wall preparations of Micrococcus luteus (lysodeikticus) catalyze in vitro peptidoglycan synthesis from UDP N-acetyl-D-glucosamine, UDP N-acetylmuramic acid-pentapeptide, and glycine. Newly synthesized peptidoglycan is partially cross-linked by a transpeptidation reaction with concomitant release of C-terminal D-alanine. Penicillin not only strongly inhibits release of D-alanine (98% at 1 m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 190 12 شماره
صفحات -
تاریخ انتشار 2008